Three minimum tile paths from bacterial artificial chromosome libraries of the soybean (Glycine max cv. 'Forrest'): tools for structural and functional genomics

Author:

Shultz JL,Yesudas C,Yaegashi S,Afzal AJ,Kazi S,Lightfoot DA

Abstract

Abstract Background The creation of minimally redundant tile paths (hereafter MTP) from contiguous sets of overlapping clones (hereafter contigs) in physical maps is a critical step for structural and functional genomics. Build 4 of the physical map of soybean (Glycine max L. Merr. cv. 'Forrest') showed the 1 Gbp haploid genome was composed of 0.7 Gbp diploid, 0.1 Gbp tetraploid and 0.2 Gbp octoploid regions. Therefore, the size of the unique genome was about 0.8 Gbp. The aim here was to create MTP sub-libraries from the soybean cv. Forrest physical map builds 2 to 4. Results The first MTP, named MTP2, was 14,208 clones (of mean insert size 140 kbp) picked from the 5,597 contigs of build 2. MTP2 was constructed from three BAC libraries (Bam HI (B), Hin dIII (H) and Eco RI (E) inserts). MTP2 encompassed the contigs of build 3 that derived from build 2 by a series of contig merges. MTP2 encompassed 2 Gbp compared to the soybean haploid genome of 1 Gbp and does not distinguish regions by ploidy. The second and third MTPs, called MTP4BH and MTP4E, were each based on build 4. Each was semi-automatically selected from 2,854 contigs. MTP4BH was 4,608 B and H insert clones of mean size 173 kbp in the large (27.6 kbp) T-DNA vector pCLD04541. MTP4BH was suitable for plant transformation and functional genomics. MTP4E was 4,608 BAC clones with large inserts (mean 175 kbp) in the small (7.5 kbp) pECBAC1 vector. MTP4E was suitable for DNA sequencing. MTP4BH and MTP4E clones each encompassed about 0.8 Gbp, the 0.7 Gbp diploid regions and 0.05 Gbp each from the tetraploid and octoploid regions. MTP2 and MTP4BH were used for BAC-end sequencing, EST integration, micro-satellite integration into the physical map and high information content fingerprinting. MTP4E will be used for genome sequence by pooled genomic clone index. Conclusion Each MTP and associated BES will be useful to deconvolute and ultimately finish the whole genome shotgun sequence of soybean.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3