Modeling the potential impacts of automated vehicles on pollutant emissions under different scenarios of a test track

Author:

Biramo Zelalem Birhanu,Mekonnen Anteneh Afework

Abstract

AbstractOne of the significant sources of air pollution and greenhouse gas emissions is the road transportation sector. These emissions are worsened by driving behaviors and network conditions. It is common knowledge that experienced and inexperienced drivers behave differently when operating vehicles. Given the same vehicle in a different timeframe, the drivers’ reactions to similar situations vary, which has a significant influence on the emissions and fuel consumption as their use of acceleration and speed differ. Because the driving patterns of automated vehicles are programmable and provide a platform for smooth driving situations, it is predicted that deploying them might potentially reduce fuel consumption, particularly in urban areas with given traffic situations. This study’s goal is to examine how different degrees of automated vehicles behave when it comes to emissions and how accelerations affect that behavior. Furthermore, the total aggregated emissions on the synthesized urban network are evaluated and compared to legacy vehicles. The emission measuring model is based on the Handbook Emission Factors for Road Transport (HBEFA)3 and is utilized with the Simulation of Urban Mobility (SUMO) microscopic simulation software. The results demonstrate that acceleration value is strongly correlated with individual vehicle emissions. Although the ability of automated vehicles (AVs) to swiftly achieve higher acceleration values has an adverse effect on emissions reduction, it was compensated by the rate of accelerations, which decreases as the automation level increases. According to the simulation results, automated vehicles can reduce carbon monoxide (CO) emissions by 38.56%, carbon dioxide (CO2) emissions by 17.09%, hydrocarbons (HC) emissions by 36.3%, particulate matter (PMx) emissions by 28.12%, nitrogen oxides (NOx) emissions by 19.78% in the most optimistic scenario (that is, when all vehicles are replaced by the upper bound automated vehicles) in the network level.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3