Real-World Carbon Dioxide Impacts of Traffic Congestion

Author:

Barth Matthew1,Boriboonsomsin Kanok1

Affiliation:

1. Center for Environmental Research and Technology, College of Engineering, University of California at Riverside, 1084 Columbia Avenue, Riverside, CA 92507.

Abstract

Transportation plays a significant role in carbon dioxide (CO2) emissions, accounting for approximately a third of the U.S. inventory. To reduce CO2 emissions in the future, transportation policy makers are planning on making vehicles more efficient and increasing the use of carbon-neutral alternative fuels. In addition, CO2 emissions can be lowered by improving traffic operations, specifically through the reduction of traffic congestion. Traffic congestion and its impact on CO2 emissions were examined by using detailed energy and emission models, and they were linked to real-world driving patterns and traffic conditions. With typical traffic conditions in Southern California as an example, it was found that CO2 emissions could be reduced by up to almost 20% through three different strategies: congestion mitigation strategies that reduce severe congestion, allowing traffic to flow at better speeds; speed management techniques that reduce excessively high free-flow speeds to more moderate conditions; and shock wave suppression techniques that eliminate the acceleration and deceleration events associated with the stop-and-go traffic that exists during congested conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference18 articles.

1. Options to Reduce Petroleum Fuel Use, Second Edition. Report CEC-600-2005-024-ED2. California Energy Commission, July 2005.

2. Energy and Environmental Impacts of Roadway Grades

Cited by 376 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3