Fusion of sentinel-1 SAR and sentinel-2 MSI data for accurate Urban land use-land cover classification in Gondar City, Ethiopia

Author:

Dagne Shimelis Sishah,Hirpha Hurgesa Hundera,Tekoye Addisu Teshome,Dessie Yeshambel Barko,Endeshaw Adane Addis

Abstract

AbstractEffective urban planning and management rely on accurate land cover mapping, which can be achieved through the combination of remote sensing data and machine learning algorithms. This study aimed to explore and demonstrate the potential benefits of integrating Sentinel-1 SAR and Sentinel-2 MSI satellite imagery for urban land cover classification in Gondar city, Ethiopia. Synthetic Aperture Radar (SAR) data from Sentinel-1A and Multispectral Instrument (MSI) data from Sentinel-2B for the year 2023 were utilized for this research work. Support Vector Machine (SVM) and Random Forest (RF) machine learning algorithms were utilized for the classification process. Google Earth Engine (GEE) was used for the processing, classification, and validation of the remote sensing data. The findings of the research provided valuable insights into the performance evaluation of the Support Vector Machine (SVM) and Random Forest (RF) algorithms for image classification using different datasets, namely Sentinel 2B Multispectral Instrument (MSI) and Sentinel 1A Synthetic Aperture Radar (SAR) data. When applied to the Sentinel 2B MSI dataset, both SVM and RF achieved an overall accuracy (OA) of 0.69, with a moderate level of agreement indicated by the Kappa score of 0.357. For the Sentinel 1A SAR data, SVM maintained the same OA of 0.69 but showed an improved Kappa score of 0.67, indicating its suitability for SAR image classification. In contrast, RF achieved a slightly lower OA of 0.66 with Sentinel 1A SAR data. However, when the datasets of Sentinel 2B MSI and Sentinel 1A SAR were combined, SVM achieved an impressive OA of 0.91 with a high Kappa score of 0.80, while RF achieved an OA of 0.81 with a Kappa score of 0.809. These findings highlight the potential of fusing satellite data from multiple sources to enhance the accuracy and effectiveness of image classification algorithms, making them valuable tools for various applications, including land use mapping and environmental monitoring.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3