Affiliation:
1. Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
2. College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar 6000, Ethiopia
3. Lake Biwa Environmental Research Institute, Otsu 520-0022, Japan
Abstract
Lake Tana is Ethiopia’s largest lake and is infested with invasive water hyacinth (E. crassipes), which endangers the lake’s biodiversity and habitat. Using appropriate remote sensing detection methods and determining the seasonal distribution of the weed is important for decision-making, water resource management, and environmental protection. As the demand for the reliable estimation of E. crassipes mapping from satellite data grows, comparing the performance of different machine learning algorithms could help in identifying the most effective method for E. crassipes detection in the lake. Therefore, this study aimed to examine the ability of random forest (RF), support vector machine (SVM), and classification and regression tree (CART) machine learning algorithms to detect E. crassipes and estimating seasonal spatial coverage of the weed on the Google Earth Engine (GEE) platform using Landsat 8 and Sentinel 2 images. Cloud-masked monthly median composite Landsat 8 and Sentinel 2 data from October 2021 and 2022, January 2022 and 2023, March 2022, and June 2022 were used to represent autumn, winter, spring, and summer, respectively. Four spectral indices were derived and used in combination with spectral bands to improve the E. crassipes detection accuracy. All methods achieved greater than 95% and 90% overall accuracy when using Sentinel 2 and Landsat 8 images, respectively. Using both data sets, all methods achieved a greater than 93% F1 score for E. crassipes detection. Though the difference in performance between the methods was small, the RF was the most accurate, while the SVM and CART methods had the same accuracy. The maximum E. crassipes coverage area was observed in autumn (22.4 km2), while the minimum (2.2 km2) was observed in summer. Based on Sentinel 2 data, the E. crassipes area coverage decreased significantly by 62.5% from winter to spring and increased significantly by 81.7% from summer to autumn. The findings suggested that the RF classifier was the most accurate E. crassipes detection algorithm, and autumn was an appropriate season for E. crassipes detection in Lake Tana.
Funder
Japan Science and Technology Agency
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献