Monitoring the Spread of Water Hyacinth (Pontederia crassipes): Challenges and Future Developments

Author:

Datta Aviraj,Maharaj Savitri,Prabhu G. Nagendra,Bhowmik Deepayan,Marino Armando,Akbari Vahid,Rupavatharam Srikanth,Sujeetha J. Alice R. P.,Anantrao Girish Gunjotikar,Poduvattil Vidhu Kampurath,Kumar Saurav,Kleczkowski Adam

Abstract

Water hyacinth (Pontederia crassipes, also referred to as Eichhornia crassipes) is one of the most invasive weed species in the world, causing significant adverse economic and ecological impacts, particularly in tropical and sub-tropical regions. Large scale real-time monitoring of areas of chronic infestation is critical to formulate effective control strategies for this fast spreading weed species. Assessment of revenue generation potential of the harvested water hyacinth biomass also requires enhanced understanding to estimate the biomass yield potential for a given water body. Modern remote sensing technologies can greatly enhance our capacity to understand, monitor, and estimate water hyacinth infestation within inland as well as coastal freshwater bodies. Readily available satellite imagery with high spectral, temporal, and spatial resolution, along with conventional and modern machine learning techniques for automated image analysis, can enable discrimination of water hyacinth infestation from other floating or submerged vegetation. Remote sensing can potentially be complemented with an array of other technology-based methods, including aerial surveys, ground-level sensors, and citizen science, to provide comprehensive, timely, and accurate monitoring. This review discusses the latest developments in the use of remote sensing and other technologies to monitor water hyacinth infestation, and proposes a novel, multi-modal approach that combines the strengths of the different methods.

Funder

Royal Academy of Engineering

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3