Optical scan and 3D printing guided radiation therapy – an application and provincial experience in cutaneous nasal carcinoma

Author:

Cheng Jui Chih,Dubey Arbind,Beck James,Sasaki David,Leylek Ahmet,Rathod Shrinivas

Abstract

Abstract Background Single field Orthovoltage radiation is an acceptable modality used for the treatment of nasal cutaneous cancer. However, this technique has dosimetric pitfalls and unnecessary excessive exposure of radiation to organs at risk (OAR). We present the clinical outcome of a case series of cutaneous nasal tumours using a novel technique incorporating an optical scanner and a 3-dimensional (3D) printer to deliver treatments using parallel opposed (POP) fields. Materials and methods The POP delivery method was validated using ion chamber and phantom measurements before implementation. A retrospective chart review of 26 patients treated with this technique between 2015 and 2019 was conducted. Patients’ demographics and treatment outcomes were gathered and tabulated. These patients first underwent an optical scan of their faces to collect topographical data. The data were then transcribed into 3D printing algorithms, and positive impressions of the faces were printed. Custom nose block bolus was made with wax encased in an acrylic shell; 4 cm thick using the printed face models. Custom lead shielding was also generated. Treatments were delivered using 250 KeV photons POP arrangement with 4 cm diameter circle applicator cone and prescribed to the midplane. Dose and fractionation were as per physician discretion. Results Phantom measurements at mid-plane were found to match the prescribed dose within ±0.5%. For the 26 cases in this review, the median age was 78.5 years, with 15 females and 11 males. 85% of cases had Basal cell carcinoma (BCC); 1 had squamous cell carcinoma (SCC), one had synchronous BCC + SCC, and 1 had Merkel cell carcinoma. Twenty-one cases had T1N0 disease, 4 had T2N0, and 1 had T3N0. Dose and fractionation delivered were 40Gy in 10 fractions for the majority of cases. The complete response rate at a median follow-up of 6 months was 88%; 1 patient had a refractory tumour, and one patient had a recurrence. Toxicities were minor with 81% with no reported side effects. Three patients experienced grade 3 skin toxicity. Conclusions Utilization of optic scanner and 3D printing technology, with the innovative approach of using POP orthovoltage beams, allows an effective and efficient way of treatment carcinomas of the nose with a high control rate and low toxicity profiles.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges and Application of 3D Printing in Radiation Oncology;2023 International Conference on Disruptive Technologies (ICDT);2023-05-11

2. Advanced Image Segmentation and Modeling – A Review of the 2021–2022 Thematic Series;3D Printing in Medicine;2023-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3