Electrohydrodynamic (EHD) printing of nanomaterial composite inks and their applications

Author:

Ul Hassan Rizwan,Sharipov Mirkomil,Ryu WonHyoungORCID

Abstract

AbstractThe utilization of high-resolution printed flexible electronic devices is prevalent in various fields, including energy storage, intelligent healthcare monitoring, soft robotics, and intelligent human–machine interaction, owing to its compact nature and mechanical flexibility. The EHD jet printing technology has the potential to develop the field of printing industry through its ability to fabricate high-resolution, flexible, stretchable, and 3D structures for electronic applications such as displays, sensors, and transistors. The EHD jet printing technology involves the use of solution-based inks made of diverse functional materials to print a wide range of structures. Consequently, it is imperative to have a comprehensive understanding of nanomaterial composites that are printed using EHD jet printing technology. This review provides a thorough overview of nanomaterial composite inks printed for electronic devices using EHD jet printing technology. In particular, a comprehensive overview has been provided about the utilization of EHD jet printing for nanomaterial composites in several domains, including flexible electrodes, flexible displays, transistors, energy harvesting, sensors, and biomedical applications. Moreover, this analysis presents a concise overview of the limitations and prospective future directions for nanomaterial composites fabricated by EHD jet printing.

Funder

National Research Foundation of Korea

National Research Foundation of Korea (NRF) Grant funded by the Korean Government

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3