Potential distribution of the primary malaria vector Anopheles gambiae Giles [Diptera: Culicidae] in Southwest Nigeria under current and future climatic conditions

Author:

Olabimi Isaac OmotayoORCID,Ileke Kayode David,Adu Babasola Williams,Arotolu Temitope Emmanuel

Abstract

Abstract Background Mosquitoes are key vectors for the transmission of several diseases. Anopheles gambiae is known to transmit pathogens of malaria and filariasis. Due to several anthropogenic factors such as climate change and population growth leading to diverse land use, their distribution and disease spreading pattern may change. This study estimated the potential distribution and climatic suitability of An. gambiae under the present-day and future conditions across Southwest Nigeria using Ecological Niche Modelling (ENM). The future scenarios assessed were based on two general circulation models (GCMs), namely community climate system model 4 (CCSM4) and geophysical fluid dynamics laboratory-climate model 3 (GFDL-CM3), in two representative concentration pathways (RCP 2.6 and RCP 8.5). Methodology The occurrence data were obtained from literatures that have reported the presence of An. gambiae mosquito species in locations within the study area. Ecological niche modelling data were processed and analysed using maximum entropy algorithm implemented in MaxEnt. Result Fifty-five (55) unique occurrences of An. gambiae were used in the model calibration after data cleaning. Data analysis for the present-day habitat suitability shows that more than two-thirds (81.71%) of the study area was observed to be suitable for An. gambiae population. However, the two future GCMs showed contrasting results. The CCSM4 models indicated a slight increase in both RCPs with 2.5 and 8.5 having 81.77 and 82.34% suitability, respectively. The reverse was the case for the GFDL-CM3 models as RCPs 2.5 and 8.5 had 78.86 and 76.86%. Conclusion This study revealed that the study area is climatically suitable for An. gambiae and will continue to be so in the future irrespective of the contrasting results from the GCMs used. Since vector population is often linked with their disease transmission capacity, proper measures must be put in place to mitigate disease incidences associated with the activities of An. gambiae.

Publisher

Springer Science and Business Media LLC

Reference67 articles.

1. Abose, T., Yeebiyo, Y., Olana, D., Alamirew, D., Beyene, Y., Regassa, L., & Mengesha, A. (1998). Re-orientation and definition of the role of malaria vector-control in Ethiopia: The epidemiology and control of malaria with special emphasis on the distribution, behaviour and susceptibility of insecticides of anopheline vectors and chloroquine resistance in Zwai, Central Ethiopia and other areas (p. 31). World Health Organization.

2. Agboola, S. A. (1979). An agricultural Atlas of Nigeria (p. 51). Oxford University Press.

3. Aguilar, M., & Lado, C. (2012). Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae. The ISME Journal, 6(8), 1506–1514.

4. Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545.

5. Akpan, G. E., Adepoju, K. A., Oladosu, O. R., & Adelabu, S. A. (2018). Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt. PLoS ONE, 13(10), e0204233.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3