Modeling the current and future distribution of Brucellosis under climate change scenarios in Qinghai Lake basin, China

Author:

Arotolu Temitope Emmanuel123,Wang Haoning4,Lv Jianing3,Shi Kun5,Huang Liya6,Wang Xiaolong123

Affiliation:

1. 1 Northeast Forestry University , Center of Conservation Medicine & Ecological Safety , Harbin, Heilongjiang province, P. R. China

2. 2 Key Laboratory of Wildlife Diseases and Biosecurity management , Harbin, Heilongjiang province, P. R. China

3. 3 Northeast Forestry University , College of Wildlife and Protected Area, Harbin , Heilongjiang province, P. R. China

4. 4 Harbin University , School of Geography and Tourism , Harbin, Heilongjiang province, P. R. China

5. 5 Beijing Forestry University , Wildlife Institute , Beijing , P. R. China

6. 6 Changbai Mountain Academy of Sciences , Antu, Jilin province, P. R. China .

Abstract

Abstract Bruce llosis is a bacterial disease caused by various Brucella species, which infect primarily cattle, swine, goats, sheep, and dogs. The disease is typically transmitted to humans through direct contact with diseased animals, consumption of contaminated animal products, or inhalation of airborne pollutants. The majority of cases are caused by consuming unpasteurized goat or sheep milk or cheese. Based on observed Brucellosis occurrence data and ecogeographic variables, a MaxEnt algorithm was used to model the current and future distribution of Brucellosis in Qinghai Lake basin, P.R. China. Our model showed the Brucellosis current distribution and predicts suitable habitat shifts under future climate scenarios. In the new representatives; SSP 2.6 and SSP 4.5 for the year 2050s and 2070s, our model predicts an expansion in the current suitable areas. This indicates that under the possible climate changes in the future, the living space of Brucellosis in Qinghai Lake basin China will expand significantly. Ecogeographic variables that contributed significantly to the distribution of Brucellosis in Qinghai Lake basin are revealed by our model. The results of our study will promote comparisons with future research and provide a new perspective to inform decision-making in the field of public health in Qinghai province.

Publisher

Walter de Gruyter GmbH

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3