Comprehensive genetic testing combined with citizen science reveals a recently characterized ancient MC1R mutation associated with partial recessive red phenotypes in dog

Author:

Anderson HeidiORCID,Honkanen Leena,Ruotanen Päivi,Mathlin Julia,Donner Jonas

Abstract

Abstract Background The Melanocortin 1 Receptor (MC1R) plays a central role in regulation of coat color determination in various species and is commonly referred to as the “E (extension) Locus”. Allelic variation of the MC1R gene is associated with coat color phenotypes EM (melanistic mask), EG (grizzle/domino) and e1–3 (recessive red) in dogs. In addition, a previous study of archeological dog specimens over 10,000 years of age identified a variant p.R301C in the MC1R gene that may have influenced coat color of early dogs. Results Commercial genotyping of 11,750 dog samples showed the R301C variant of the MC1R gene was present in 35 breeds or breed varieties, at an allele frequency of 1.5% in the tested population. We detected no linkage disequilibrium between R301C and other tested alleles of the E locus. Based on current convention we propose that R301C should be considered a novel allele of the E locus, which we have termed eA for “e ancient red”. Phenotype analysis of owner-provided dog pictures reveals that the eA allele has an impact on coat color and is recessive to wild type E and dominant to the e alleles. In dominant black (KB/*) dogs it can prevent the phenotypic expression of the K locus, and the expressed coat color is solely determined by the A locus. In the absence of dominant black, eA/eA and eA/e genotypes result in the coat color patterns referred to in their respective breed communities as domino in Alaskan Malamute and other Spitz breeds, grizzle in Chihuahua, and pied in Beagle. Conclusions This study demonstrates a large genotype screening effort to identify the frequency and distribution of the MC1R R301C variant, one of the earliest mutations captured by canine domestication, and citizen science empowered characterization of its impact on coat color.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3