Reversible dysregulation of renal circadian rhythm in lupus nephritis

Author:

Mishra Rakesh,Bethunaickan Ramalingam,Berthier Celine C.,Yi Zhengzi,Strohl Joshua J.,Huerta Patricio T.,Zhang Weijia,Davidson AnneORCID

Abstract

Abstract Background We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. Methods Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. Results We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. Conclusions Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.

Funder

Lupus Research Alliance

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3