Exacerbating effects of circadian rhythm disruption on the systemic lupus erythematosus

Author:

Shen LupingORCID,Han Mo,Luo Xuan,Zhang Qixiang,Xu Huanke,Wang Jing,Wei Ning,Liu Qing,Wang Guangji,Zhou FangORCID

Abstract

ObjectiveCircadian rhythm disruption (CRD) has been associated with inflammation and immune disorders, but its role in SLE progression is unclear. We aimed to investigate the impact of circadian rhythms on immune function and inflammation and their contribution to SLE progression to lupus nephritis (LN).MethodsThis study retrospectively analysed the clinical characteristics and transcriptional profiles of 373 samples using bioinformatics and machine-learning methods. A flare risk score (FRS) was established to predict overall disease progression for patients with lupus. Mendelian randomisation was used to analyse the causal relationship between CRD and SLE progression.ResultsAbnormalities in the circadian pathway were detected in patients with SLE, and lower enrichment levels suggested a disease state (normalised enrichment score=0.6714, p=0.0062). The disruption of circadian rhythms was found to be closely linked to lupus flares, with the FRS showing a strong ability to predict disease progression (area under the curve (AUC) of 5-year prediction: 0.76). The accuracy of disease prediction was improved by using a prognostic nomogram based on FRS (AUC=0.77). Additionally, Mendelian randomisation analysis revealed an inverse causal relationship between CRD and SLE (OR 0.6284 (95% CI 0.3630 to 1.0881), p=0.0485) and a positive causal relationship with glomerular disorders (OR 0.0337 (95% CI 1.634e-3 to 6.934e-1), p=0.0280).ConclusionOur study reveals that genetic characteristics arising from CRD can serve as biomarkers for predicting the exacerbation of SLE. This highlights the crucial impact of CRD on the progression of lupus.

Funder

China National Nature Science Foundation

Jiangsu Province “333” Project, China

“Double First-Class” University project

Haihe Laboratory of Cell Ecosystem Innovation Fund

Nanjing Scientific and Technological Special Project for Life and Health

Key Laboratory of Natural Medicines

Leading technology foundation research project of Jiangsu province

Publisher

BMJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3