Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes

Author:

Wang Mingzhu,Xie Kangling,Zhao Shengnan,Jia Nan,Zong Yujiao,Gu Wenping,Cai YingORCID

Abstract

Abstract Background It has been documented that aerobic exercise (AE) has a positive effect on improving cognitive function in type 2 diabetes (T2DM) patients. Here, we tried to explore how AE regulates the expression of long non-coding RNA in serum-exosomes (Exos), thereby affecting cognitive impairment in T2DM mice as well as its potential molecular mechanism. Methods T2DM mouse models were constructed, and serum-Exos were isolated for whole transcriptome sequencing to screen differentially expressed lncRNA and mRNA, followed by prediction of downstream target genes. The binding ability of miR-382-3p with a long non-coding RNA MALAT1 and brain-derived neurotrophic factor (BDNF) was explored. Then, primary mouse hippocampal neurons were collected for in vitro mechanism verification, as evidenced by the detection of hippocampal neurons' vitality, proliferation, and apoptosis capabilities, and insulin resistance. Finally, in vivo mechanism verification was performed to assess the effect of AE on insulin resistance and cognitive disorder. Results Transcriptome sequencing analysis showed that MALAT1 was lowly expressed and miR-382-3p was highly expressed in serum-Exos samples of T2DM mice. There were targeted binding sites between MALAT1 and miR-382-3p and between miR-382-3p and BDNF. In vitro experiments showed that MALAT1 upregulated BDNF expression by inhibiting miR-382-3p. Silencing MALAT1 or overexpressing miR-382-3p could reduce the expression of INSR, IRS-1, IRS-2, PI3K/AKT, and Ras/MAPK, inhibit neuronal proliferation, and promote apoptosis. In vivo experiments further confirmed that AE could increase the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thereby improving cognitive impairment in T2DM mice. Conclusion AE may upregulate the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thus improving cognitive impairment in T2DM mice.

Funder

General program of the National Natural Science Foundation of China

National Natural Science Foundation of China Youth Fund

Key Research and Development Program in Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3