CXCL10 levels at hospital admission predict COVID-19 outcome: hierarchical assessment of 53 putative inflammatory biomarkers in an observational study

Author:

Lorè Nicola I.ORCID,De Lorenzo Rebecca,Rancoita Paola M. V.,Cugnata Federica,Agresti Alessandra,Benedetti Francesco,Bianchi Marco E.,Bonini Chiara,Capobianco Annalisa,Conte Caterina,Corti Angelo,Furlan Roberto,Mantegani Paola,Maugeri Norma,Sciorati Clara,Saliu Fabio,Silvestri Laura,Tresoldi Cristina,Farina Nicola,De Filippo Luigi,Battista Marco,Grosso Domenico,Gorgoni Francesca,Di Biase Carlo,Moretti Alessio Grazioli,Granata Lucio,Bonaldi Filippo,Bettinelli Giulia,Delmastro Elena,Salvato Damiano,Magni Giulia,Avino Monica,Betti Paolo,Bucci Romina,Dumoa Iulia,Bossolasco Simona,Morselli Federica,Ciceri Fabio,Rovere-Querini Patrizia,Di Serio Clelia,Cirillo Daniela M.,Manfredi Angelo A.,

Abstract

Abstract Background Host inflammation contributes to determine whether SARS-CoV-2 infection causes mild or life-threatening disease. Tools are needed for early risk assessment. Methods We studied in 111 COVID-19 patients prospectively followed at a single reference Hospital fifty-three potential biomarkers including alarmins, cytokines, adipocytokines and growth factors, humoral innate immune and neuroendocrine molecules and regulators of iron metabolism. Biomarkers at hospital admission together with age, degree of hypoxia, neutrophil to lymphocyte ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP) and creatinine were analysed within a data-driven approach to classify patients with respect to survival and ICU outcomes. Classification and regression tree (CART) models were used to identify prognostic biomarkers. Results Among the fifty-three potential biomarkers, the classification tree analysis selected CXCL10 at hospital admission, in combination with NLR and time from onset, as the best predictor of ICU transfer (AUC [95% CI] = 0.8374 [0.6233–0.8435]), while it was selected alone to predict death (AUC [95% CI] = 0.7334 [0.7547–0.9201]). CXCL10 concentration abated in COVID-19 survivors after healing and discharge from the hospital. Conclusions CXCL10 results from a data-driven analysis, that accounts for presence of confounding factors, as the most robust predictive biomarker of patient outcome in COVID-19. Graphic abstract

Funder

Ministero della Salute

EHA

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3