Author:
Chen Jing,Liu Aiming,Dai JunJie,Li Yichen,Zhang Yu,Chen Rongchang,Shi Fei
Abstract
Abstract
Background
Acute exposures to high levels of air pollutants are thought to be associated with hospitalization of patients with lung infection, while relatively little is known about the association between air pollutants and HOSPITAL ADMISSIONS FOR pulmonary sepsis.
Objectives
To assess the correlation between low-level exposure to air pollutants and the hospitalizations for pulmonary sepsis in elderly patients.
Methods
A total of 249 elderly patients with pulmonary sepsis from January 2018 to December 2020 in Shenzhen people’s hospital were included. The data regarding hospitalizations for pulmonary sepsis, meteorological factors, and daily average levels of air pollutants on single-day lags (Lag0 to Lag7) in Shenzhen were collected. Low-level exposure was defined as the annual means of air pollutants below the levels of the Ambient Air Quality Standard (AAQS) in China (NO. GB3095-2012) and/or Global Air Quality Guidelines (AQG). A time-stratified case-crossover study design approach was used to evaluate the associations between exposure to air pollutants and incidence of the disease, univariate and multivariate logistic regression analysis to analyze the association between levels of air pollutants and hospitalizations for pulmonary sepsis in elderly patients.
Results
Exposure to PM1(P = 0.007, Lag 2 day; P = 0.038, Lag6 day), PM2.5(P = 0.046, Lag2 day), PM10(P = 0.048, Lag4 day), and O3(P = 0.044, Lag6 day) was positively correlated with elevated risk of hospitalizations for pulmonary sepsis. In addition, logistic regression analysis revealed that exposure to PM1 (OR = 1.833, 95%CI:1.032 ~ 3.256, Lag6 day) and O3 (OR = 2.091, 95%CI:1.019 ~ 4.289, Lag6 day) were the independent risk factors of pulmonary sepsis in elderly patients.
Conclusion
Our results demonstrate that short-term low-level exposure to PM1 and O3 could elevate the risk of hospitalizations for pulmonary sepsis in elderly patients in Shenzhen, providing evidence for developing early warning and screening systems for pulmonary sepsis.
Funder
the Natural Science Foundation of Guangdong Province, China
the Natural Science Foundation of China
Appropriate Health Technology Promotion Project of Guangdong Province
Scientific Research and Cultivation Project of Shenzhen People’s Hospital
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine