Helicobacter pylori phagosome maturation in primary human macrophages

Author:

Borlace Glenn N,Jones Hilary F,Keep Stacey J,Butler Ross N,Brooks Doug A

Abstract

Abstract Background Helicobacter pylori (H. pylori) is a micro-aerophilic, spiral-shaped, motile bacterium that is the principal cause of gastric and duodenal ulcers in humans and is a major risk factor for the development of gastric cancer. Despite provoking a strong innate and adaptive immune response in the host, H. pylori persists in the gastric mucosa, avoiding eradication by macrophages and other phagocytic cells, which are recruited to the site of infection. Here we have characterised the critical degradative process of phagosome maturation in primary human macrophages for five genotypically and phenotypically distinct clinical strains of H. pylori. Results All of the H. pylori strains examined showed some disruption to the phagosome maturation process, when compared to control E. coli. The early endosome marker EEA1 and late endosome marker Rab7 were retained on H. pylori phagosomes, while the late endosome-lysosome markers CD63, LAMP-1 and LAMP-2 were acquired in an apparently normal manner. Acquisition of EEA1 by H. pylori phagosomes appeared to occur by two distinct, strain specific modes. H. pylori strains that were negative for the cancer associated virulence factor CagA were detected in phagosomes that recruited large amounts of EEA1 relative to Rab5, compared to CagA positive strains. There were also strain specific differences in the timing of Rab7 acquisition which correlated with differences in the rate of intracellular trafficking of phagosomes and the timing of megasome formation. Megasomes were observed for all of the H. pylori strains examined. Conclusions H. pylori appeared to disrupt the normal process of phagosome maturation in primary human macrophages, appearing to block endosome fission. This resulted in the formation of a hybrid phagosome-endosome-lysosome compartment, which we propose has reduced degradative capacity. Reduced killing by phagocytes is consistent with the persistence of H. pylori in the host, and would contribute to the chronic stimulation of the inflammatory immune response, which underlies H. pylori-associated disease.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3