Runtime prediction of big data jobs: performance comparison of machine learning algorithms and analytical models

Author:

Ahmed NasimORCID,Barczak Andre L. C.,Rashid Mohammad A.,Susnjak Teo

Abstract

AbstractDue to the rapid growth of available data, various platforms offer parallel infrastructure that efficiently processes big data. One of the critical issues is how to use these platforms to optimise resources, and for this reason, performance prediction has been an important topic in the last few years. There are two main approaches to the problem of predicting performance. One is to fit data into an equation based on a analytical models. The other is to use machine learning (ML) in the form of regression algorithms. In this paper, we have investigated the difference in accuracy for these two approaches. While our experiments used an open-source platform called Apache Spark, the results obtained by this research are applicable to any parallel platform and are not constrained to this technology. We found that gradient boost, an ML regressor, is more accurate than any of the existing analytical models as long as the range of the prediction follows that of the training. We have investigated analytical and ML models based on interpolation and extrapolation methods with k-fold cross-validation techniques. Using the interpolation method, two analytical models, namely 2D-plate and fully-connected models, outperform older analytical models and kernel ridge regression algorithm but not the gradient boost regression algorithm. We found the average accuracy of 2D-plate and fully-connected models using interpolation are 0.962 and 0.961. However, when using the extrapolation method, the analytical models are much more accurate than the ML regressors, particularly two of the most recently proposed models (2D-plate and fully-connected). Both models are based on the communication patterns between the nodes. We found that using extrapolation, kernel ridge, gradient boost and two proposed analytical models average accuracy is 0.466, 0.677, 0.975, and 0.981, respectively. This study shows that practitioners can benefit from analytical models by being able to accurately predict the runtime outside of the range of the training data using only a few experimental operations.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance optimization of Spark MLlib workloads using cost efficient RICG model on exponential projective sampling;Cluster Computing;2024-05-08

2. RFCPredicModel: Prediction Algorithm of Precision Medicine in Healthcare with Big Data;Communications in Computer and Information Science;2024

3. PM100: A Job Power Consumption Dataset of a Large-scale Production HPC System;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12

4. A Novel Multi-Task Performance Prediction Model for Spark;Applied Sciences;2023-11-11

5. Predicting Sales Using Performance Comparison of Different Algorithms in Regression Algorithms;2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3