Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Ikegwu, A.C., Nweke, H.F., Anikwe, C.V., Alo, U.R., Okonkwo, O.R.: Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions, and research directions. Cluster Comput. 25(5), 3343–3387 (2022). https://doi.org/10.1007/s10586-022-03568-5
2. Lee, H., Kang, M., Youn, S.B., Lee, J.G., Kwon, Y.: An experimental comparison of iterative MapReduce frameworks. In: International Conference on Information and Knowledge Management, Proceedings, pp. 2089–2094. (2016)
3. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016). https://doi.org/10.1145/2934664
4. Sewal, P., Singh, H.: Analyzing distributed Spark MLlib regression algorithms for accuracy, execution efficiency and scalability using best subset selection approach. Multimed. Tools Appl. (2023). https://doi.org/10.1007/s11042-023-17330-5
5. Zaharia M. et al.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of NSDI 2012: 9th USENIX Symposium on Networked Systems Design and Implementation, pp. 15–28. (2012)