De-occlusion and recognition of frontal face images: a comparative study of multiple imputation methods

Author:

Mensah Joseph Agyapong,Nortey Ezekiel N. N.,Ocran Eric,Iddi Samuel,Asiedu Louis

Abstract

AbstractIncreasingly, automatic face recognition algorithms have become necessary with the development and extensive use of face recognition technology, particularly in the era of machine learning and artificial intelligence. However, the presence of unconstrained environmental conditions degrades the quality of acquired face images and may deteriorate the performance of many classical face recognition algorithms. Due to this backdrop, many researchers have given considerable attention to image restoration and enhancement mechanisms, but with minimal focus on occlusion-related and multiple-constrained problems. Although occlusion robust face recognition modules, via sparse representation have been explored, they require a large number of features to achieve correct computations and to maximize robustness to occlusions. Therefore, such an approach may become deficient in the presence of random occlusions of relatively moderate magnitude. This study assesses the robustness of Principal Component Analysis and Singular Value Decomposition using Discrete Wavelet Transformation for preprocessing and city block distance for classification (DWT-PCA/SVD-L1) face recognition module to image degradations due to random occlusions of varying magnitudes (10% and 20%) in test images acquired with varying expressions. Numerical evaluation of the performance of the DWT-PCA/SVD-L1 face recognition module showed that the use of the de-occluded faces for recognition enhanced significantly the performance of the study recognition module at each level (10% and 20%) of occlusion. The algorithm attained the highest recognition rate of 85.94% and 78.65% at 10% and 20% occlusions respectively, when the MICE de-occluded face images were used for recognition. With the exception of Entropy where MICE de-occluded face images attained the highest average value, the MICE and RegEM result in images of similar quality as measured by their Absolute mean brightness error (AMBE) and peak signal to noise ratio (PSNR). The study therefore recommends MICE as a suitable imputation mechanism for de-occlusion of face images acquired under varying expressions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3