The limitations for expression recognition in computer vision introduced by facial masks

Author:

Abate Andrea Francesco,Cimmino LuciaORCID,Mocanu Bogdan-Costel,Narducci Fabio,Pop Florin

Abstract

AbstractFacial Expression recognition is a computer vision problem that took relevant benefit from the research in deep learning. Recent deep neural networks achieved superior results, demonstrating the feasibility of recognizing the expression of a user from a single picture or a video recording the face dynamics. Research studies reveal that the most discriminating portions of the face surfaces that contribute to the recognition of facial expressions are located on the mouth and the eyes. The restrictions for COVID pandemic reasons have also revealed that state-of-the-art solutions for the analysis of the face can severely fail due to the occlusions of using the facial masks. This study explores to what extend expression recognition can deal with occluded faces in presence of masks. To a fairer comparison, the analysis is performed in different occluded scenarios to effectively assess if the facial masks can really imply a decrease in the recognition accuracy. The experiments performed on two public datasets show that some famous top deep classifiers expose a significant reduction in accuracy in presence of masks up to half of the accuracy achieved in non-occluded conditions. Moreover, a relevant decrease in performance is also reported also in the case of occluded eyes but the overall drop in performance is not as severe as in presence of the facial masks, thus confirming that, like happens for face biometric recognition, occluded faces by facial mask still represent a challenging limitation for computer vision solutions.

Funder

Università degli Studi di Salerno

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3