CoPart: a context-based partitioning technique for big data

Author:

Migliorini SaraORCID,Belussi Alberto,Quintarelli Elisa,Carra Damiano

Abstract

AbstractThe MapReduce programming paradigm is frequently used in order to process and analyse a huge amount of data. This paradigm relies on the ability to apply the same operation in parallel on independent chunks of data. The consequence is that the overall performances greatly depend on the way data are partitioned among the various computation nodes. The default partitioning technique, provided by systems like Hadoop or Spark, basically performs a random subdivision of the input records, without considering the nature and correlation between them. Even if such approach can be appropriate in the simplest case where all the input records have to be always analyzed, it becomes a limit for sophisticated analyses, in which correlations between records can be exploited to preliminarily prune unnecessary computations. In this paper we design a context-based multi-dimensional partitioning technique, called CoPart, which takes care of data correlation in order to determine how records are subdivided between splits (i.e., units of work assigned to a computation node). More specifically, it considers not only the correlation of data w.r.t. contextual attributes, but also the distribution of each contextual dimension in the dataset. We experimentally compare our approach with existing ones, considering both quality criteria and the query execution times.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3