Author:
Mao Qizhong,Qader Mohiuddin Abdul,Hristidis Vagelis
Abstract
AbstractIn the pre-big data era, many traditional databases supported spatial queries via spatial indexes. However, modern applications are seeing a rapid increase of the volume and ingestion rate of spatial data. Log-structured Merge (LSM) tree is used by many big data systems as their storage structure in order to support write-intensive large-volume workloads, which are usually only optimized for single-dimensional data. Research has studied how spatial indexes can be supported on LSM systems, but focused mainly on the local index organization, that is, how data is organized inside a single LSM component. This paper studies various aspects of LSM spatial indexing, including spatial merge policies, which determine when and how spatial components are merged. Three stack-based and one leveled merge policies have been studied, which have been implemented on a common big data system Apache AsterixDB. The write and read performance on various workloads is evaluated, and our findings and recommendations are discussed. A key finding is that Leveled policies underperform other stack-based merge policies for most types of spatial workloads.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献