Comparison of LSM indexing techniques for storing spatial data

Author:

Mao Qizhong,Qader Mohiuddin Abdul,Hristidis Vagelis

Abstract

AbstractIn the pre-big data era, many traditional databases supported spatial queries via spatial indexes. However, modern applications are seeing a rapid increase of the volume and ingestion rate of spatial data. Log-structured Merge (LSM) tree is used by many big data systems as their storage structure in order to support write-intensive large-volume workloads, which are usually only optimized for single-dimensional data. Research has studied how spatial indexes can be supported on LSM systems, but focused mainly on the local index organization, that is, how data is organized inside a single LSM component. This paper studies various aspects of LSM spatial indexing, including spatial merge policies, which determine when and how spatial components are merged. Three stack-based and one leveled merge policies have been studied, which have been implemented on a common big data system Apache AsterixDB. The write and read performance on various workloads is evaluated, and our findings and recommendations are discussed. A key finding is that Leveled policies underperform other stack-based merge policies for most types of spatial workloads.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3