Multi combination pattern labeling by using deep learning for chameleon rotary machine environment

Author:

Kang JiEun,Kim SuBi,Yoon YongIk

Abstract

AbstractRotary machines are constructed and operated in diverse industrial environments and operate according to various specifications and characteristics. When rotary machinery constructed under dynamic real world environments is in operation, various types of vibrations are generated depending on the normal or defective state of the machinery. In this way, Numerous studies have been conducted on vibration analysis for diagnosing the state of rotary machinery. However, Without performing robust data cleansing and comprehensive labeling of the internal and external state of complex machinery, the analysis process of the condition monitoring system faces difficulties in accurately identifying the various and complex states of rotary machines and making decisions in the dynamic real world. To overcome these limitations, this paper proposes Multi Combination Pattern Labeling (MCPL) method. By simultaneously considering the complex internal and external states of rotary machines, MCPL generates detailed vibration frequency pattern criteria and labels for each state. Based on these complex pattern classifications, it is able to classify various types of abnormal states. The MCPL generates FFT patterns and spectrogram patterns by considering the simultaneous internal and external states of the rotary machine. Extracting internal and external patterns, each pattern is combined for identifying convergence patterns, named MCP. Each MCP proceeds labeling process, named MCPL, then MCPL dataset is structured. MCPL dataset is verified based on Deep Neural Network (DNN) and Convolutional Neural Network (CNN). By utilizing the DNN and CNN techniques to derive MCPL from MCP, it becomes possible to perform unbiased state diagnosis across a variety of patterns, based on the complex patterns of the internal and external states of the rotating machinery. Presenting high accuracy and stable results, MCPL are able to classify rotary machine states and detect anomalies under the convergence environment. Our source code and utilized data are available on https://github.com/JEJESBSB/Journal-of-Big-Data.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3