A New Statistical Features Based Approach for Bearing Fault Diagnosis Using Vibration Signals

Author:

Altaf MuhammadORCID,Akram TallhaORCID,Khan Muhammad AttiqueORCID,Iqbal Muhammad,Ch M Munawwar Iqbal,Hsu Ching-HsienORCID

Abstract

In condition based maintenance, different signal processing techniques are used to sense the faults through the vibration and acoustic emission signals, received from the machinery. These signal processing approaches mostly utilise time, frequency, and time-frequency domain analysis. The features obtained are later integrated with the different machine learning techniques to classify the faults into different categories. In this work, different statistical features of vibration signals in time and frequency domains are studied for the detection and localisation of faults in the roller bearings. These are later classified into healthy, outer race fault, inner race fault, and ball fault classes. The statistical features including skewness, kurtosis, average and root mean square values of time domain vibration signals are considered. These features are extracted from the second derivative of the time domain vibration signals and power spectral density of vibration signals. The vibration signal is also converted to the frequency domain and the same features are extracted. All three feature sets are concatenated, creating the time, frequency and spectral power domain feature vectors. These feature vectors are finally fed into the K- nearest neighbour, support vector machine and kernel linear discriminant analysis for the detection and classification of bearing faults. With the proposed method, the reduction percentage of more than 95% percent is achieved, which not only reduces the computational burden but also the classification time. Simulation results show that the signals are classified to achieve an average accuracy of 99.13% using KLDA and 96.64% using KNN classifiers. The results are also compared with the empirical mode decomposition (EMD) features and Fourier transform features without extracting any statistical information, which are two of the most widely used approaches in the literature. To gain a certain level of confidence in the classification results, a detailed statistical analysis is also provided.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3