Conventional dendritic cell 2 links the genetic causal association from allergic asthma to COVID-19: a Mendelian randomization and transcriptomic study

Author:

Liu Hua,Huang Siting,Yang Liting,Zhou Hongshu,Chen BoORCID,Wu Lisha,Zhang LiyangORCID

Abstract

AbstractRecent evidence suggests that allergic asthma (AA) decreases the risk of Coronavirus Disease 2019 (COVID-19). However, the reasons remain unclear. Here, we systematically explored data from GWAS (18 cohorts with 11,071,744 samples), bulk transcriptomes (3 cohorts with 601 samples), and single-cell transcriptomes (2 cohorts with 29 samples) to reveal the immune mechanisms that connect AA and COVID-19. Two-sample Mendelian randomization (MR) analysis identified a negative causal correlation from AA to COVID-19 hospitalization (OR = 0.968, 95% CI 0.940–0.997, P = 0.031). This correlation was bridged through white cell count. Furthermore, machine learning identified dendritic cells (DCs) as the most discriminative immunocytes in AA and COVID-19. Among five DC subtypes, only conventional dendritic cell 2 (cDC2) exhibited differential expression between AA/COVID-19 and controls (P < 0.05). Subsequently, energy metabolism, intercellular communication, cellular stemness and differentiation, and molecular docking analyses were performed. cDC2s exhibited more differentiation, increased numbers, and enhanced activation in AA exacerbation, while they showed less differentiation, reduced number, and enhanced activation in severe COVID-19. The capacity of cDC2 for differentiation and SARS-CoV-2 antigen presentation may be enhanced through ZBTB46, EXOC4, TLR1, and TNFSF4 gene mutations in AA. Taken together, cDC2 links the genetic causality from AA to COVID-19. Future strategies for COVID-19 prevention, intervention, and treatment could be stratified according to AA and guided with DC-based therapies. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3