Social media analysis of Twitter tweets related to ASD in 2019–2020, with particular attention to COVID-19: topic modelling and sentiment analysis

Author:

Corti Luca,Zanetti Michele,Tricella Giovanni,Bonati Maurizio

Abstract

Abstract Background Social media contains an overabundance of health information relating to people living with different type of diseases. Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with lifelong impacts and reported trends have revealed a considerable increase in prevalence and incidence. Research had shown that the ASD community provides significant support to its members through Twitter, providing information about their values and perceptions through their use of words and emotional stance. Our purpose was to analyze all the messages posted on Twitter platform regarding ASD and analyze the topics covered within the tweets, to understand the attitude of the various people interested in the topic. In particular, we focused on the discussion of ASD and COVID-19. Methods The data collection process was based on the search for tweets through hashtags and keywords. After bots screening, the NMF (Non-Negative Matrix Factorization) method was used for topic modeling because it produces more coherent topics compared to other solutions. Sentiment scores were calculated using AFiNN for each tweet to represent its negative to positive emotion. Results From the 2.458.929 tweets produced in 2020, 691.582 users were extracted (188 bots which generated 59.104 tweets), while from the 2.393.236 total tweets from 2019, the number of identified users was 684.032 (230 bots which generated 50.057 tweets). The total number of COVID-ASD tweets is only a small part of the total dataset. Often, the negative sentiment identified in the sentiment analysis referred to anger towards COVID-19 and its management, while the positive sentiment reflected the necessity to provide constant support to people with ASD. Conclusions Social media contributes to a great discussion on topics related to autism, especially with regards to focus on family, community, and therapies. The COVID-19 pandemic increased the use of social media, especially during the lockdown period. It is important to help develop and distribute appropriate, evidence-based ASD-related information.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3