Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data

Author:

Garouani Moncef,Ahmad Adeel,Bouneffa Mourad,Hamlich Mohamed,Bourguin Gregory,Lewandowski Arnaud

Abstract

AbstractAdvanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3