A new Internet of Things architecture for real-time prediction of various diseases using machine learning on big data environment

Author:

Ed-daoudy Abderrahmane,Maalmi Khalil

Abstract

AbstractA number of technologies enabled by Internet of Thing (IoT) have been used for the prevention of various chronic diseases, continuous and real-time tracking system is a particularly important one. Wearable medical devices with sensor, health cloud and mobile applications have continuously generating a huge amount of data which is often called as streaming big data. Due to the higher speed of the data generation, it is difficult to collect, process and analyze such massive data in real-time in order to perform real-time actions in case of emergencies and extracting hidden value. using traditional methods which are limited and time-consuming. Therefore, there is a significant need to real-time big data stream processing to ensure an effective and scalable solution. In order to overcome this issue, this work proposes a new architecture for real-time health status prediction and analytics system using big data technologies. The system focus on applying distributed machine learning model on streaming health data events ingested to Spark streaming through Kafka topics. Firstly, we transform the standard decision tree (DT) (C4.5) algorithm into a parallel, distributed, scalable and fast DT using Spark instead of Hadoop MapReduce which becomes limited for real-time computing. Secondly, this model is applied to streaming data coming from distributed sources of various diseases to predict health status. Based on several input attributes, the system predicts health status, send an alert message to care providers and store the details in a distributed database to perform health data analytics and stream reporting. We measure the performance of Spark DT against traditional machine learning tools including Weka. Finally, performance evaluation parameters such as throughput and execution time are calculated to show the effectiveness of the proposed architecture. The experimental results show that the proposed system is able to effectively process and predict real-time and massive amount of medical data enabled by IoT from distributed and various diseases.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3