An integrated model for evaluation of big data challenges and analytical methods in recommender systems

Author:

Asemi Adeleh,Asemi AsefehORCID,Ko Andrea,Alibeigi Ali

Abstract

AbstractThe study aimed to present an integrated model for evaluation of big data (BD) challenges and analytical methods in recommender systems (RSs). The proposed model used fuzzy multi-criteria decision making (MCDM) which is a human judgment-based method for weighting of RSs’ properties. Human judgment is associated with uncertainty and gray information. We used fuzzy techniques to integrate, summarize, and calculate quality value judgment distances. Then, two fuzzy inference systems (FIS) are implemented for scoring BD challenges and data analytical methods in different RSs. In experimental testing of the proposed model, A correlation coefficient (CC) analysis is conducted to test the relationship between a BD challenge evaluation for a collaborative filtering-based RS and the results of fuzzy inference systems. The result shows the ability of the proposed model to evaluate the BD properties in RSs. Future studies may improve FIS by providing rules for evaluating BD tools.

Funder

Open access funding provided by Corvinus University of Budapest

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Reference31 articles.

1. Alguliyev RM, Gasimova RT, abbasli RN. the obstacles in big data process. Int J Mod Educ Comput Sci. 2017;9(3):28–35. https://doi.org/10.5815/ijmecs.2017.03.04.

2. Alibeigi A, Munir AB, Asemi A. Compliance with Malaysian Personal Data Protection Act 2010 by banking and financial institutions, a legal survey on privacy policies. Int Rev Law Comput Technol. 2021. https://doi.org/10.1080/13600869.2021.1970936.

3. Anari F, Asemi A, Asemi A, Munir AB. Social interactive media tools and knowledge sharing: a case study; 2013. Ar Xiv:1309.1825 [Cs]. http://arxiv.org/abs/1309.1825

4. Artemenko O, Kunanets N, Pasichnyk V, Kut V. Mobile location-based social distancing recommender system with context evaluation: a project approach. 2021;10. http://ceur-ws.org/Vol-2851/paper31.pdf

5. Artemenko O, Pasichnyk V, Kunanets N, Shunevych KH. Using sentiment text analysis of user reviews in social media for E-Tourism Mobile Recommender Systems; 2020. http://ceur-ws.org/Vol-2604/paper20.pdf. Accessed 14 Dec 2021.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3