Multi-sample $$\zeta $$-mixup: richer, more realistic synthetic samples from a p-series interpolant

Author:

Abhishek Kumar,Brown Colin J.,Hamarneh Ghassan

Abstract

AbstractModern deep learning training procedures rely on model regularization techniques such as data augmentation methods, which generate training samples that increase the diversity of data and richness of label information. A popular recent method, mixup, uses convex combinations of pairs of original samples to generate new samples. However, as we show in our experiments, mixup  can produce undesirable synthetic samples, where the data is sampled off the manifold and can contain incorrect labels. We propose $$\zeta $$ ζ -mixup, a generalization of mixup  with provably and demonstrably desirable properties that allows convex combinations of $${T} \ge 2$$ T 2 samples, leading to more realistic and diverse outputs that incorporate information from $${T}$$ T original samples by using a p-series interpolant. We show that, compared to mixup, $$\zeta $$ ζ -mixup  better preserves the intrinsic dimensionality of the original datasets, which is a desirable property for training generalizable models. Furthermore, we show that our implementation of $$\zeta $$ ζ -mixup  is faster than mixup, and extensive evaluation on controlled synthetic and 26 diverse real-world natural and medical image classification datasets shows that $$\zeta $$ ζ -mixup  outperforms mixup, CutMix, and traditional data augmentation techniques. The code will be released at https://github.com/kakumarabhishek/zeta-mixup.

Funder

Natural Sciences and Engineering Research Council of Canada

British Columbia Cancer Foundation

Collaborative Health Research Projects

Simon Fraser University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3