SwinDFU-Net: Deep learning transformer network for infection identification in diabetic foot ulcer

Author:

M.G Sumithra,Venkatesan Chandran

Abstract

BACKGROUND: The identification of infection in diabetic foot ulcers (DFUs) is challenging due to variability within classes, visual similarity between classes, reduced contrast with healthy skin, and presence of artifacts. Existing studies focus on visual characteristics and tissue classification rather than infection detection, critical for assessing DFUs and predicting amputation risk. OBJECTIVE: To address these challenges, this study proposes a deep learning model using a hybrid CNN and Swin Transformer architecture for infection classification in DFU images. The aim is to leverage end-to-end mapping without prior knowledge, integrating local and global feature extraction to improve detection accuracy. METHODS: The proposed model utilizes a hybrid CNN and Swin Transformer architecture. It employs the Grad CAM technique to visualize the decision-making process of the CNN and Transformer blocks. The DFUC Challenge dataset is used for training and evaluation, emphasizing the model’s ability to accurately classify DFU images into infected and non-infected categories. RESULTS: The model achieves high performance metrics: sensitivity (95.98%), specificity (97.08%), accuracy (96.52%), and Matthews Correlation Coefficient (0.93). These results indicate the model’s effectiveness in quickly diagnosing DFU infections, highlighting its potential as a valuable tool for medical professionals. CONCLUSION: The hybrid CNN and Swin Transformer architecture effectively combines strengths from both models, enabling accurate classification of DFU images as infected or non-infected, even in complex scenarios. The use of Grad CAM provides insights into the model’s decision process, aiding in identifying infected regions within DFU images. This approach shows promise for enhancing clinical assessment and management of DFU infections.

Publisher

IOS Press

Reference26 articles.

1. The society for vascular surgery lower extremity threatened limb classification system: Risk stratification based on wound, ischemia, and foot infection (WIfI);Mills;Journal of Vascular Surgery,2014

2. Health economics of diabetic foot ulcer and recent trends to accelerate treatment;Jodheea-Jutton;The Foot,2022

3. American Diabetes Association. Economic costs of diabetes in the U.S. in 2023. Diabetes Care. 2023; 46(3): 364-372.

4. International Wound Journal. Advances in diabetic foot ulcer treatment: A review. Int Wound J. 2023; 20(2): 250-259.

5. Deep learning algorithms for COVID-19 detection based on chest CT and radiographs: A systematic review and meta-analysis;Zhu;Acad Radiol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3