Abstract
AbstractWith the rapid growth of consumer credit and the huge amount of financial data developing effective credit scoring models is very crucial. Researchers have developed complex credit scoring models using statistical and artificial intelligence (AI) techniques to help banks and financial institutions to support their financial decisions. Neural networks are considered as a mostly wide used technique in finance and business applications. Thus, the main aim of this paper is to help bank management in scoring credit card clients using machine learning by modelling and predicting the consumer behaviour with respect to two aspects: the probability of single and consecutive missed payments for credit card customers. The proposed model is based on the bidirectional Long-Short Term Memory (LSTM) model to give the probability of a missed payment during the next month for each customer. The model was trained on a real credit card dataset and the customer behavioural scores are analysed using classical measures such as accuracy, Area Under the Curve, Brier score, Kolmogorov–Smirnov test, and H-measure. Calibration analysis of the LSTM model scores showed that they can be considered as probabilities of missed payments. The LSTM model was compared to four traditional machine learning algorithms: support vector machine, random forest, multi-layer perceptron neural network, and logistic regression. Experimental results show that, compared with traditional methods, the consumer credit scoring method based on the LSTM neural network has significantly improved consumer credit scoring.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Reference79 articles.
1. Dyché J. The CRM handbook: a business guide to customer relationship management. Boston: Addison-Wesley Longman Publishing; 2001.
2. Hand DJ, Henley WE. Statistical classification methods in consumer credit scoring: a review. J R Stat Soc Ser A. 1997;160(3):523–41. https://doi.org/10.1111/j.1467-985x.1997.00078x.
3. Anderson R. The credit scoring toolkit: theory and practice for retail credit risk management and decision automation. Oxford: Oxford University Press; 2007.
4. Liu Y. New issues in credit scoring application. Institut für Wirtschaftsinformatik, Abteilung Wirtschaftsinformatik II, Georg-August-Universität, Göttingen. 2001.
5. Bensic M, Sarlija N, Zekic-Susac M. Modelling small-business credit scoring by using logistic regression, neural networks and decision trees. Intell Syst Acc Fin Manag. 2005;13(3):133–50. https://doi.org/10.1002/isaf.261.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献