Fast cluster-based computation of exact betweenness centrality in large graphs

Author:

Daniel CecileORCID,Furno Angelo,Goglia Lorenzo,Zimeo Eugenio

Abstract

AbstractNowadays a large amount of data is originated by complex systems, such as social networks, transportation systems, computer and service networks. These systems can be modeled by using graphs and studied by exploiting graph metrics, such as betweenness centrality (BC), a popular metric to analyze node centrality of graphs. In spite of its great potential, this metric requires long computation time, especially for large graphs. In this paper, we present a very fast algorithm to compute BC of undirected graphs by exploiting clustering. The algorithm leverages structural properties of graphs to find classes of equivalent nodes: by selecting one representative node for each class, we are able to compute BC by significantly reducing the number of single-source shortest path explorations adopted by Brandes’ algorithm. We formally prove the graph properties that we exploit to define the algorithm and present an implementation based on Scala for both sequential and parallel map-reduce executions. The experimental evaluation of both versions, conducted with synthetic and real graphs, reveals that our solution largely outperforms Brandes’ algorithm and significantly improves known heuristics.

Funder

Agence Nationale de la Recherche

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving model performance of shortest‐path‐based centrality measures in network models through scale space;Concurrency and Computation: Practice and Experience;2024-03-26

2. TriBeC: identifying influential users on social networks with upstream and downstream network centrality;International Journal of General Systems;2023-04-03

3. Assessing road criticality and loss of healthcare accessibility during floods: the case of Cyclone Idai, Mozambique 2019;International Journal of Health Geographics;2022-10-12

4. Efficient Top-k Ego-Betweenness Search;2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

5. A Top-Down Scheme for Coverage Centrality Queries on Road Networks;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3