Improving model performance of shortest‐path‐based centrality measures in network models through scale space

Author:

Menguc Kenan1ORCID,Yilmaz Alper2

Affiliation:

1. Industrial Engineering Istanbul Technical University Istanbul Turkey

2. Department of Civil, Environmental and Geodetic Engineering The Ohio State University Columbus Ohio USA

Abstract

SummaryThe quality of the solution in resolving a complex network depends on either the speed or accuracy of the results. While some health studies prioritize high performance, fast algorithms are favored in scenarios requiring rapid decision‐making. A comprehensive understanding of the problem necessitates a detailed analysis of the network and its individual components. Betweenness Centrality (BC) and Closeness Centrality (CC) are commonly employed measures in network studies. This study introduces a new strategy to compute BC and CC that assesses their sensitivity in the scale space while measuring the shortest path. The scale space is generated by incorporating a scale parameter that is shown to achieve up to 60% performance improvements for various datasets. The study provides in‐depth insights into the importance of the scale space analysis. Finally, a flexible measurement tool is provided that is suitable for various types of problems. To demonstrate the flexibility and applicability, we experimented with two methods for 10 different graphs using the proposed approach.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3