A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals

Author:

Doma Vikrant,Pirouz MatinORCID

Abstract

AbstractEmotion recognition using brain signals has the potential to change the way we identify and treat some health conditions. Difficulties and limitations may arise in general emotion recognition software due to the restricted number of facial expression triggers, dissembling of emotions, or among people with alexithymia. Such triggers are identified by studying the continuous brainwaves generated by human brain. Electroencephalogram (EEG) signals from the brain give us a more diverse insight on emotional states that one may not be able to express. Brainwave EEG signals can reflect the changes in electrical potential resulting from communications networks between neurons. This research involves analyzing the epoch data from EEG sensor channels and performing comparative analysis of multiple machine learning techniques [namely Support Vector Machine (SVM), K-nearest neighbor, Linear Discriminant Analysis, Logistic Regression and Decision Trees each of these models] were tested with and without principal component analysis (PCA) for dimensionality reduction. Grid search was also utilized for hyper-parameter tuning for each of the tested machine learning models over Spark cluster for lowered execution time. The DEAP Dataset was used in this study, which is a multimodal dataset for the analysis of human affective states. The predictions were based on the labels given by the participants for each of the 40 1-min long excerpts of music. music. Participants rated each video in terms of the level of arousal, valence, like/dislike, dominance and familiarity. The binary class classifiers were trained on the time segmented, 15 s intervals of epoch data, individually for each of the 4 classes. PCA with SVM performed the best and produced an F1-score of 84.73% with 98.01% recall in the 30th to 45th interval of segmentation. For each of the time segments and “a binary training class” a different classification model converges to a better accuracy and recall than others. The results prove that different classification models must be used to identify different emotional states.

Funder

Amazon Web Services

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in neuromarketing and improved understanding of consumer behaviour: analysing tool possibilities and research trends;Cogent Business & Management;2024-07-12

2. Experimental Study on Emergency Psychophysiological and Behavioral Reactions to Coal Mining Accidents;Applied Psychophysiology and Biofeedback;2024-06-28

3. MHNNSL: EEG-Based Emotion Recognized by Multi-task Hypergraph Neural Network combined with Self-supervised Learning;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

4. Emotion Recognition from Physiological Signals Using Ensembled Machine Learning Strategy;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

5. A Hybrid Critical Channel Selection Framework for EEG Emotion Recognition;IEEE Sensors Journal;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3