Application of deep learning technique in next generation sequence experiments

Author:

Özgür Su,Orman Mehmet

Abstract

AbstractIn recent years, the widespread utilization of biological data processing technology has been driven by its cost-effectiveness. Consequently, next-generation sequencing (NGS) has become an integral component of biological research. NGS technologies enable the sequencing of billions of nucleotides in the entire genome, transcriptome, or specific target regions. This sequencing generates vast data matrices. Consequently, there is a growing demand for deep learning (DL) approaches, which employ multilayer artificial neural networks and systems capable of extracting meaningful information from these extensive data structures. In this study, the aim was to obtain optimized parameters and assess the prediction performance of deep learning and machine learning (ML) algorithms for binary classification in real and simulated whole genome data using a cloud-based system. The ART-simulated data and paired-end NGS (whole genome) data of Ch22, which includes ethnicity information, were evaluated using XGBoost, LightGBM, and DL algorithms. When the learning rate was set to 0.01 and 0.001, and the epoch values were updated to 500, 1000, and 2000 in the deep learning model for the ART simulated dataset, the median accuracy values of the ART models were as follows: 0.6320, 0.6800, and 0.7340 for epoch 0.01; and 0.6920, 0.7220, and 0.8020 for epoch 0.001, respectively. In comparison, the median accuracy values of the XGBoost and LightGBM models were 0.6990 and 0.6250 respectively. When the same process is repeated for Chr 22, the results are as follows: the median accuracy values of the DL models were 0.5290, 0.5420 and 0.5820 for epoch 0.01; and 0.5510, 0.5830 and 0.6040 for epoch 0.001, respectively. Additionally, the median accuracy values of the XGBoost and LightGBM models were 0.5760 and 0.5250, respectively. While the best classification estimates were obtained at 2000 epochs and a learning rate (LR) value of 0.001 for both real and simulated data, the XGBoost algorithm showed higher performance when the epoch value was 500 and the LR was 0.01. When dealing with class imbalance, the DL algorithm yielded similar and high Recall and Precision values. Conclusively, this study serves as a timely resource for genomic scientists, providing guidance on why, when, and how to effectively utilize deep learning/machine learning methods for the analysis of human genomic data.

Funder

Ege University Office of Scientific Research Projects

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3