An adaptive and real-time based architecture for financial data integration

Author:

Fikri Noussair,Rida Mohamed,Abghour Noureddine,Moussaid Khalid,El Omri Amina

Abstract

Abstract In this paper we are proposing an adaptive and real-time approach to resolve real-time financial data integration latency problems and semantic heterogeneity. Due to constraints that we have faced in some projects that requires real-time massive financial data integration and analysis, we decided to follow a new approach by combining a hybrid financial ontology, resilient distributed datasets and real-time discretized stream. We create a real-time data integration pipeline to avoid all problems of classic Extract-Transform-Load tools, which are data processing latency, functional miscomprehensions and metadata heterogeneity. This approach is considered as contribution to enhance reporting quality and availability in short time frames, the reason of the use of Apache Spark. We studied Extract-Transform-Load (ETL) concepts, data warehousing fundamentals, big data processing technics and oriented containers clustering architecture, in order to replace the classic data integration and analysis process by our new concept resilient distributed DataStream for online analytical process (RDD4OLAP) cubes which are consumed by using Spark SQL or Spark Core basics.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3