Abstract
AbstractBackgroundSpeech is the most common modality through which language is communicated, and delayed, disordered, or absent speech production is a hallmark of many neurodevelopmental and genetic disorders. Yet, speech is not often carefully phenotyped in neurodevelopmental disorders. In this paper, we argue that such deep phenotyping, defined as phenotyping that is specific to speech production and not conflated with language or cognitive ability, is vital if we are to understand how genetic variations affect the brain regions that are associated with spoken language.Speech is distinct from language, though the two are related behaviorally and share neural substrates. We present a brief taxonomy of developmental speech production disorders, with particular emphasis on the motor speech disorders childhood apraxia of speech (a disorder of motor planning) and childhood dysarthria (a set of disorders of motor execution). We review the history of discoveries concerning the KE family, in whom a hereditary form of communication impairment was identified as childhood apraxia of speech and linked to dysfunction in theFOXP2gene. The story demonstrates how instrumental deep phenotyping of speech production was in this seminal discovery in the genetics of speech and language. There is considerable overlap between the neural substrates associated with speech production and withFOXP2expression, suggesting that further genes associated with speech dysfunction will also be expressed in similar brain regions. We then show how a biologically accurate computational model of speech production, in combination with detailed information about speech production in children with developmental disorders, can generate testable hypotheses about the nature, genetics, and neurology of speech disorders.ConclusionsThough speech and language are distinct, specific types of developmental speech disorder are associated with far-reaching effects on verbal communication in children with neurodevelopmental disorders. Therefore, detailed speech phenotyping, in collaboration with experts on pediatric speech development and disorders, can lead us to a new generation of discoveries about how speech development is affected in genetic disorders.
Funder
national institute on deafness and other communication disorders
Publisher
Springer Science and Business Media LLC
Subject
Cognitive Neuroscience,Neurology (clinical),Pathology and Forensic Medicine,Pediatrics, Perinatology and Child Health
Reference103 articles.
1. American Speech-Language-Hearing Association. Childhood apraxia of speech [Technical Report]. 2007. Available from www.asha.org/policy.
2. American Speech-Language-Hearing Association (n.d.) Speech sound disorders: articulation and phonology. (Practice Portal). Retrieved 6/9/2021 from www.asha.org/Practice-Portal/Clinical-Topics/Articulation-and-Phonology/.
3. Barbeau E, Descouteaux M, Petrides M. Dissociating the white matter tracts connecting the temporo-parietal cortical region with frontal cortex using diffusion tractography. Sci Rep. 2020;10:8186.
4. Barokova M, La Valle C, Hassan S, Lee C, Xu M, McKechnie R, et al. Eliciting language samples for analysis (ELSA): A new protocol for assessing expressive language and communication in autism. Autism Res. 2021;14(1):112–26.
5. Bartha-Doering L, Kollndorfer K, Schwartz E, Fischmeister F, Alexopoulos J, Langs G, Prayer D, Kasprian G, Seidl R. The role of the corpus callosum in language network connectivity in children. Developmental science. 2021;24(2):e13031. https://doi.org/10.1111/desc.13031.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献