Abstract
Abstract
Background
Deficits in perception and production of vocal pitch are often observed in people with autism spectrum disorder (ASD), but the neural basis of these deficits is unknown. In magnetoencephalogram (MEG), spectrally complex periodic sounds trigger two continuous neural responses—the auditory steady state response (ASSR) and the sustained field (SF). It has been shown that the SF in neurotypical individuals is associated with low-level analysis of pitch in the ‘pitch processing center’ of the Heschl’s gyrus. Therefore, alternations in this auditory response may reflect atypical processing of vocal pitch. The SF, however, has never been studied in people with ASD.
Methods
We used MEG and individual brain models to investigate the ASSR and SF evoked by monaural 40 Hz click trains in boys with ASD (N = 35) and neurotypical (NT) boys (N = 35) aged 7–12-years.
Results
In agreement with the previous research in adults, the cortical sources of the SF in children were located in the left and right Heschl’s gyri, anterolateral to those of the ASSR. In both groups, the SF and ASSR dominated in the right hemisphere and were higher in the hemisphere contralateral to the stimulated ear. The ASSR increased with age in both NT and ASD children and did not differ between the groups. The SF amplitude did not significantly change between the ages of 7 and 12 years. It was moderately attenuated in both hemispheres and was markedly delayed and displaced in the left hemisphere in boys with ASD. The SF delay in participants with ASD was present irrespective of their intelligence level and severity of autism symptoms.
Limitations
We did not test the language abilities of our participants. Therefore, the link between SF and processing of vocal pitch in children with ASD remains speculative.
Conclusion
Children with ASD demonstrate atypical processing of spectrally complex periodic sound at the level of the core auditory cortex of the left-hemisphere. The observed neural deficit may contribute to speech perception difficulties experienced by children with ASD, including their poor perception and production of linguistic prosody.
Funder
Charity Foundation “Way Out”
Moscow State University of Psychology and Education
Gothenburg University Library
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health,Developmental Biology,Developmental Neuroscience,Molecular Biology
Reference101 articles.
1. American Psychiatric Association, editor. Diagnostic and statistical manual of mental disorders (DSM-5). Philadelphia: American Psychiatric Publication; 2013.
2. Tager-Flusberg H, Joseph RM. Identifying neurocognitive phenotypes in autism. Philos Trans R Soc B. 2003;358(1430):303–14.
3. Eyler LT, Pierce K, Courchesne E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain. 2012;135:949–60.
4. Hackett TA, Preuss TM, Kaas JH. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol. 2001;441(3):197–222.
5. Humphries C, Liebenthal E, Binder JR. Tonotopic organization of human auditory cortex. Neuroimage. 2010;50(3):1202–11.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献