Mechanical performance of strain-hardening cementitious composites (SHCC) with bacterial addition

Author:

Zhang Zhigang,Liu Dawei,Ding Yuanzhao,Wang Shuping

Abstract

AbstractIncorporation of bacteria can realize self-healing and enhance strength of concrete, which has been drawn extensive attention in past decades. The studies focused on the properties of fiber reinforced concrete with bacterial addition are still very limited. In this paper, mechanical performance of strain hardening cementitious composites (SHCC) with directly adding vegetative bacterial cells was investigated. The experimental results revealed that the compressive, first cracking, and tensile strength of SHCCs was increased due to the addition of bacteria, while the tensile strain capacity tended to decline. At micro-scale level, the matrix containing bacteria has relative higher fracture toughness to that of reference mix. Interestingly, the bacteria notably lowered chemical bond between PVA fiber and its surrounding hydrates; on the other hand, the frictional bond was enhanced. The findings in this study can provide a reference for modifying the surface of hydrophilic fibers.

Funder

the National Key R&D Program of China

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3