Author:
Zhang Zhigang,Liu Dawei,Ding Yuanzhao,Wang Shuping
Abstract
AbstractIncorporation of bacteria can realize self-healing and enhance strength of concrete, which has been drawn extensive attention in past decades. The studies focused on the properties of fiber reinforced concrete with bacterial addition are still very limited. In this paper, mechanical performance of strain hardening cementitious composites (SHCC) with directly adding vegetative bacterial cells was investigated. The experimental results revealed that the compressive, first cracking, and tensile strength of SHCCs was increased due to the addition of bacteria, while the tensile strain capacity tended to decline. At micro-scale level, the matrix containing bacteria has relative higher fracture toughness to that of reference mix. Interestingly, the bacteria notably lowered chemical bond between PVA fiber and its surrounding hydrates; on the other hand, the frictional bond was enhanced. The findings in this study can provide a reference for modifying the surface of hydrophilic fibers.
Funder
the National Key R&D Program of China
National Natural Science Foundation of China
the Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献