Machine Learning Model Construction and Testing: Anticipating Cancer Incidence and Mortality

Author:

Ding Yuanzhao1ORCID

Affiliation:

1. School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK

Abstract

In recent years, the escalating environmental challenges have contributed to a rising incidence of cancer. The precise anticipation of cancer incidence and mortality rates has emerged as a pivotal focus in scientific inquiry, exerting a profound impact on the formulation of public health policies. This investigation adopts a pioneering machine learning framework to address this critical issue, utilizing a dataset encompassing 72,591 comprehensive records that include essential variables such as age, case count, population size, race, gender, site, and year of diagnosis. Diverse machine learning algorithms, including decision trees, random forests, logistic regression, support vector machines, and neural networks, were employed in this study. The ensuing analysis revealed testing accuracies of 62.17%, 61.92%, 54.53%, 55.72%, and 62.30% for the respective models. This state-of-the-art model not only enhances our understanding of cancer dynamics but also equips researchers and policymakers with the capability of making meticulous projections concerning forthcoming cancer incidence and mortality rates. Considering sustainability, the application of this advanced machine learning framework emphasizes the importance of judiciously utilizing extensive and intricate databases. By doing so, it facilitates a more sustainable approach to healthcare planning, allowing for informed decision-making that takes into account the long-term ecological and societal impacts of cancer-related policies. This integrative perspective underscores the broader commitment to sustainable practices in both health research and public policy formulation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3