Machine learning-assisted optimal schedule of underground water pipe inspection

Author:

Fan Xudong,Yu Xiong

Abstract

AbstractThere are over 2.2 million miles of underground water pipes serving the cities in the United States. Many are in poor conditions and deteriorate rapidly. Failures of these pipes could cause enormous financial losses to the customers and communities. Inspection provides crucial information for pipe condition assessment and maintenance plan; it, however, is very expensive for underground pipes due to accessibility issues. Therefore, water agencies commonly face the challenge to 1) decide whether it is worthwhile to schedule expensive water pipe inspections under financial constraints, and 2) if so, how to optimize the inspection schedule to maximize its value. This study leverages the physical model and data-based ML (ML) models for underground water pipe failure prediction to shed light on these two important questions for decision making. Analyses are firstly conducted to assess the value of water pipe inspection. Results by use of a physical-based failure model and Monte Carlo simulations indicate that by inspecting pipe’s condition, i.e., assessment of pipe’s erosion depth, the uncertainty of water pipe failure prediction can be narrowed down by 51%. For optimal inspection schedule, an artificial neural network (ANN) model, trained with historical inspection data, is evaluated for its performance in forecasting the future pipe failure probability. The results showed that a biased pipe failure prediction can occur under limited rounds of inspection. However, incorporating more rounds of inspection allows to predict the pipe failure conditions over its life cycle. From this, an optimal inspection plan can be proposed to achieve the maximum benefits of inspection in uncertainty reduction. A few salient results from the analyses include 1) the optimal schedule for inspection is not necessarily equal in the time interval, 2) by setting the goal of uncertainty reduction, an optimal inspection schedule can be obtained, where ML (ML) model augmented by continuously training with inspection data allows to reliably predict water pipe failure conditions over its life cycle. While this study focuses on underground pipe inspection, the general observations and methodology are applicable to optimize the inspection of other types of infrastructure as well.

Funder

NSF

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3