Criticality-Based Management of Facility Assets

Author:

Salman Alaa1ORCID

Affiliation:

1. College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 34211, Saudi Arabia

Abstract

Effective facility asset management requires specific skills and tools to optimize the use of limited resources, making a decision support system essential. This research introduces a comprehensive decision support system, which is a framework organized into three models: the criticality model, the rehabilitation model, and the optimum criticality model to manage the rehabilitation of facility assets. The criticality model utilizes the Analytical Hierarchy Process (AHP) to assess the group of assets. Emphasizing criticality as a central management factor, this model lays the foundation for subsequent decision-making. The rehabilitation model employs an Artificial Neural Network (ANN), integrating Customer Level of Service (CLoS), Technical Level of Service (TLoS), and asset criticality to determine appropriate rehabilitation actions. NeuralTools 7.5 is leveraged for precise predictions of rehabilitation strategies tailored to specific assets. The third model, optimum criticality, focuses on prioritizing rehabilitation activities within the constraints of limited budgets. Lingo 20.0 is utilized to optimize rehabilitation activities, considering budget limitations and other constraints, offering a strategic approach to maximize the impact of available resources. This integrated framework provides decision-makers with a systematic and data-driven approach to facility management, enhancing the efficiency and effectiveness of rehabilitation actions. An academic building was chosen as a hypothetical example to implement the three models and suggest the essential considerations for managing both the academic building itself and other infrastructure assets. The results obtained demonstrate that the principles and methodologies encapsulated in this project can be extrapolated and scaled up for application to large-scale infrastructure assets, ensuring the sustenance of the requisite level of service and the management of acceptable risk on a broader scale.

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

Reference41 articles.

1. Impact of employee satisfaction with facilities on self-assessed productivity support;Groen;J. Facil. Manag.,2019

2. Acharyya, A. (2023, December 01). Public Investment in Household Water Infrastructure and Economic Development: An Achilles Heel for India?. Available online: https://www.researchgate.net/publication/355427630.

3. National Asset Management Support Group (NAMS) (2011). International Infrastructure Management Manual (IIMM).

4. Palisade/Lumivero Corporation (2017). Lumivero, Palisade/Lumivero Corporation.

5. LINDO Systems Inc (2023). LINDO, LINDO Systems Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3