Effects of gravity data quality and spacing on the accuracy of the geoid in South Korea

Author:

Hong Chang-Ki,Kwon Jay Hyoun,Lee Bo Mi,Lee Jisun,Choi Yun Soo,Lee Suk-Bae

Abstract

Abstract The effects of gravity data quality and spacing on the accuracy of the computed geoid are analyzed. The analysis is performed using simulated gravity data that accommodate the real gravity signal in South Korea. The reference geoid is generated using both simulated gravity data and digital terrain models (DTM), assuming that both data sets are errorless. By artificially controlling the gravity data quality and spacing, we are able to calculate and analyze the geoid errors. The results show that the current distribution of real gravity data in South Korea causes geoid errors, with the standard deviation being as much as 8 cm, and that these geoid errors are mainly caused by the distribution of gravity data rather than by the noise in the data. Areas showing large geoid errors are also clearly identified; these areas should be subjected to supplementary gravity surveying at data spacing smaller than 2 km to achieve a 5-cm level of geoid accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference11 articles.

1. Hwang, C. and L. Hwang, Use of geoid for assessing trigonometric height accuracy and detecting vertical land motion, J. Surv. Eng., 128(1), 1–20, 2002.

2. Jekeli, C., Statistical analysis of moving-base gravimetry and gravity gradiometry, OSU Report No. 466, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 2003.

3. Kotsakis, C. and M. G. Sideris, Study of the gravity field spectrum in Canada in view of cm-geoid determination, Joint Meeting of the International Gravity Commission and the International Geoid Commission No2, Trieste, ITALIE (07/09/1998) 1999, 40(3–4), 451 p., (10 ref.), 179–188, 1999.

4. Lee, J. S., B. M. Lee, J. H. Kwon, and Y. W. Lee, Free-air anomaly from a consistent preprocessing of land gravity data in South Korea, Korean J. Geomatics, 26(4), 379–386, 2008.

5. Lee, S. B., A study on the Geoid Modeling by Gravimetric Methods and Methods of Satellite Geodesy, J. Korean Soc. Geodyn., Photogramm. Cartogr., 18(4), 359–367, 2000.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3