Gravity data requirements for decimetre accuracy regional geoid using Stokes' Remove Compute Restore technique in Nigeria

Author:

ODUMOSU Joseph Olayemi,NNAM Victor Chukwuemeka

Abstract

The need for dense and accurate gravity data cannot be overemphasised in the development of a precise gravimetric geoid model. Unfortunately, the field observations required are costly, and labour-intensive hence the need to ascertain via numerical simulations the appropriate field specifications before embarking on them. This paper presents an experimental study on the gravimetric data specifications (spatial resolution and data accuracy) required for achieving decimetre-level accuracy geoid using the conventional Stokes' Remove Compute Restore (RCR) method in Nigeria. A two-step solution approach was used in this study. The steps were determination of the (i) effect of data spacing by a comparative assessment of computation results obtained by using gravity data at four user determined intervals and (ii) effect of observation accuracy by numerical simulation using error propagation analysis. The data intervals (3′×3′, 5′×5′, 10′×10′ and 20′×20′) were selected from a combination of 1815 terrestrial FA anomaly points merged with EGM2008 derived FA anomaly covering the study area. Also, observational errors investigated were 0 mGal, 0.1 mGal, 0.5 mGal, 1 mGal and 5 mGal. The study was conducted in Nigeria having a total land area of approximately 923,768 km2. The study established that gravimetric geoid accuracy improves substantially as the spatial resolution and accuracy of the gravity data improves. Also, the study identified that data spacing contributes more to the overall geoid error than data accuracy. In addition, the study observed that hilly regions should have denser data spacing than plain areas. Within the test region, a data spacing of 3′×3′ with gravity observational errors 5 mGal was found to produce an acceptable gravimetric geoid. The produced gravimetric geoid had a pre-fit Root Mean Square Error (RMSE) of 15.6 cm when compared with GNSS-Levelling data at 27 stations located evenly across the study area.

Publisher

Walter de Gruyter GmbH

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3