Abstract
Abstract
Background
Endophytic bacteria overlay significant role in plant growth promotion, eliminating phyto-pathogens and combating stress-conditions. In the present study, we aimed to screen high salt tolerant bacteria and study their adaptive response to elevated salt concentrations. A total of 46 endophytic bacterial isolates from Vigna radiata were screened for salt tolerance. The high salt tolerant endophytic isolate was characterized for alteration in morphology, growth rate, protein profiling, and compatible solute concentrations.
Results
The isolate MHN12, based upon biochemical characterization and partial 16S rDNA sequencing identified as B. licheniformis (accession number MG273753) was able to tolerate up to 15% NaCl (Sodium Chloride) (2.6 M) concentration. The isolate possessed 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity along with indole acetic acid (IAA), siderophore, ammonia, organic acid and hydrogen cyanide (HCN) production. Accumulation of proline was apparent up to 7.5% NaCl concentration and declined afterwards. Ultrastructure analysis using TEM (transmission electron microscopy) revealed the morphological alteration from rods to filaments.
Conclusion
Acclimatization to salt stress and plant growth promoting activities could contribute to utilization of this bacterium as bioinoculant to enhance the crop yield and discourage the application of chemical fertilizers.
Funder
Department of Science and Technology, New Delhi, India
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. del Carmen M, del Carmen M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31. https://doi.org/10.1016/j.micres.2018.01.005
2. Rani S, Kumar P, Suneja P (2021) Biotechnological interventions for inducing abiotic stress tolerance in crops. Plant Gene 15:100315. https://doi.org/10.1016/j.plgene.2021.100315
3. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58. https://doi.org/10.1080/17429140903125848
4. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914. https://doi.org/10.1139/m97-131
5. Suneja P, Piplani S, Dahiya P, Dudeja SS (2016) Molecular characterization of rhizobia from revertants of non-nodulating cultivar and normal cultivar of chickpea. J Agric Sci Technol 18(3):763–773 http://jast.modares.ac.ir/article-23-9089-en.html
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献