Author:
Hallmann J.,Quadt-Hallmann A.,Mahaffee W. F.,Kloepper J. W.
Abstract
Endophytic bacteria are ubiquitous in most plant species, residing latently or actively colonizing plant tissues locally as well as systemically. Several definitions have been proposed for endophytic bacteria; in this review endophytes will be defined as those bacteria that can be isolated from surface-disinfested plant tissue or extracted from within the plant, and that do not visibly harm the plant. While this definition does not include nonextractable endophytic bacteria, it is a practical definition based on experimental limitations and is inclusive of bacterial symbionts, as well as internal plant-colonizing nonpathogenic bacteria with no known beneficial or detrimental effects on colonized plants. Historically, endophytic bacteria have been thought to be weakly virulent plant pathogens but have recently been discovered to have several beneficial effects on host plants, such as plant growth promotion and increased resistance against plant pathogens and parasites. In general, endophytic bacteria originate from the epiphytic bacterial communities of the rhizosphere and phylloplane, as well as from endophyte-infested seeds or planting materials. Besides gaining entrance to plants through natural openings or wounds, endophytic bacteria appear to actively penetrate plant tissues using hydrolytic enzymes like cellulase and pectinase. Since these enzymes are also produced by pathogens, more knowledge on their regulation and expression is needed to distinguish endophytic bacteria from plant pathogens. In general, endophytic bacteria occur at lower population densities than pathogens, and at least some of them do not induce a hypersensitive response in the plant, indicating that they are not recognized by the plant as pathogens. Evolutionarily, endophytes appear to be intermediate between saprophytic bacteria and plant pathogens, but it can only be speculated as to whether they are saprophytes evolving toward pathogens, or are more highly evolved than plant pathogens and conserve protective shelter and nutrient supplies by not killing their host. Overall, the endophytic microfloral community is of dynamic structure and is influenced by biotic and abiotic factors, with the plant itself constituting one of the major influencing factors. Since endophytic bacteria rely on the nutritional supply offered by the plant, any parameter affecting the nutritional status of the plant could consequently affect the endophytic community. This review summarizes part of the work being done on endophytic bacteria, including their methodology, colonization, and establishment in the host plant, as well as their role in plant–microbe interactions. In addition, speculative conclusions are raised on some points to stimulate thought and research on endophytic bacteria.Key words: endophytic bacteria, methods, localization, diversity, biological control.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology