Computational modeling and experimental analysis for the diagnosis of cell survival/death for Akt protein

Author:

Salau Ayodeji OlalekanORCID,Jain ShrutiORCID

Abstract

Abstract Background Signalling systems that control cell decisions allow cells to process input signals by apprehending the information of the cell to give one of these two feasible outputs: cell death or cell survival. In this paper, a well-structured control design methodology supported by a hierarchical design system was developed to examine signalling networks that control cell decisions by considering a combinations of three primary signals (input proteins): the pro survival growth factors, epidermal growth factor (EGF), insulin, and the pro death cytokine, tumour necrosis factor-α (TNF), for AKT/protein kinase B. The AKT actions were examined by using the three input proteins for cell survival/apoptosis for a period of 0–24 h in 13 different slices for ten different combinations. Results Experimental analysis was performed to consider the reactions that were essential to explain the action of AKT. Furthermore, pre-processing and data normalization were performed by using standard deviation, plotting histograms, and scatter plots. Feature extraction and selection were performed using correlation matrix. Radial basis function (RBF) and multiple-layer perceptron (MLP) were used for cell survival/death classification. For all the ten combinations of the three input proteins, 42.85, 347.22, 153.13 were obtained as the minimum value, maximum value, and mean value, respectively, and 126.11 was obtained as the standard deviation for 5-0-5 ng/ml combinations of TNF-EGF-Insulin. The results obtained with MLP 10-8-1 were found to outperform other techniques. Conclusion The results from the experimental analysis indicate that it is possible to build self-consistent compendia cell-signalling data based on AKT protein which were simulated computationally to yield important insights for the control of cell survival/death.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3