Abstract
Abstract
Background
The crucial factor in the production of bio-fuels is the choice of potent microorganisms used in fermentation processes. Despite the evolving trend of using bacteria, yeast is still the primary choice for fermentation. Molecular characterization of many genes from baker’s yeast (Saccharomyces cerevisiaea), and fission yeast (Schizosaccharomyces pombe), have improved our understanding in gene structure and the regulation of its expression. This in silico study was done with the aim of analyzing the promoter regions, transcription start site (TSS), and CpG islands of genes encoding for alcohol production in S. cerevisiaea S288C and S. pombe 972h-.
Results
The analysis revealed the highest promoter prediction scores (1.0) were obtained in five sequences (AAD4, SFA1, GRE3, YKL071W, and YPR127W) for S. cerevisiaea S288C TSS while the lowest (0.8) were found in three sequences (AAD6, ADH5, and BDH2). Similarly, in S. pombe 972h-, the highest (0.99) and lowest (0.88) prediction scores were obtained in five (Adh1, SPBC8E4.04, SPBC215.11c, SPAP32A8.02, and SPAC19G12.09) and one (erg27) sequences, respectively. Determination of common motifs revealed that S. cerevisiaea S288C had 100% coverage at MSc1 with an E value of 3.7e−007 while S. pombe 972h- had 95.23% at MSp1 with an E value of 2.6e+002. Furthermore, comparison of identified transcription factor proteins indicated that 88.88% of MSp1 were exactly similar to MSc1. It also revealed that only 21.73% in S. cerevisiaea S288C and 28% in S. pombe 972h- of the gene body regions had CpG islands. A combined phylogenetic analysis indicated that all sequences from both S. cerevisiaea S288C and S. pombe 972h- were divided into four subgroups (I, II, III, and IV). The four clades are respectively colored in blue, red, green, and violet.
Conclusion
This in silico analysis of gene promoter regions and transcription factors through the actions of regulatory structure such as motifs and CpG islands of genes encoding alcohol production could be used to predict gene expression profiles in yeast species.
Funder
Adama Science and Technology University
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. P.Hazell, “B ioenergy and agriculture: promises and challenges. The International Food Policy Research Institute (IFPRI),” Focus 14 • Brief 2 Of 12 • Report uploaded by Peter Hazell on February 2015..
2. Ngwenya TT (2012) An industrial perspective of factors affecting molasses fermentation by Saccharomyces cerevisiae. J Brew Distill 3(2). https://doi.org/10.5897/jbd12.002
3. Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2(1):69–77. https://doi.org/10.1006/mben.1999.0140
4. V. Ansanay-galeote, B. Blondin, S. Dequin, and J. Sablayrolles, “Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae,” 2001, 10.1023/A.
5. Fadel M, Keera AA, Mouafi FE, Kahil T (2013) High Level Ethanol from Sugar Cane Molasses by a New Thermotolerant Saccharomyces cerevisiae Strain in Industrial Scale. Biotechnol Res Int 2013:1–6. https://doi.org/10.1155/2013/253286
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献